Jump to content

Nanotube

From Wikipedia, the free encyclopedia

Rotating single-walled zigzag carbon nanotube

A nanotube is a nanoscale cylindrical structure with a hollow core, typically composed of carbon atoms, though other materials can also form nanotubes. Carbon nanotubes (CNTs) are the most well-known and widely studied type, consisting of rolled-up sheets of graphene with diameters ranging from about 1 to tens of nanometers and lengths up to millimeters.[1][2] These structures exhibit remarkable physical, chemical, and electrical properties, including high tensile strength, excellent thermal and electrical conductivity, and unique quantum effects due to their one-dimensional nature.[2] Nanotubes can be classified into two main categories: single-walled nanotubes (SWNTs) and multi-walled nanotubes (MWNTs), each with distinct characteristics and potential applications. Since their discovery in 1991, nanotubes have been the subject of intense research and development, with promising applications in fields such as electronics, materials science, energy storage, and medicine.[1][3]

Types

[edit]

Nanotubes builders

[edit]
  • Chiraltube. Atomistic builder for any nanotubes with any chirality from any 2D material.[14]
  • TubeASP. For carbon nanotubes.
  • Nanotuve Modeler. For carbon nanotubes only.

References

[edit]
  1. ^ a b Maruyama S, Arnold MS, Krupke R, Peng LM (February 2022). "Physics and applications of nanotubes". Journal of Applied Physics. 131 (8). doi:10.1063/5.0087075.
  2. ^ a b Ren G (September 2024). "Carbon nanotube". Encyclopedia Britannica.
  3. ^ Reidel H (March 2017). "Current and Potential Applications of Carbon Nanotubes". PreScouter.
  4. ^ Luo L, Mo L, Tong Z, Chen Y (May 2009). "Facile Synthesis of Ternary Boron Carbonitride Nanotubes". Nanoscale Research Letters. 4 (8): 834–838. doi:10.1007/s11671-009-9325-7. PMC 2894111. PMID 20596377.
  5. ^ Rubio A, Corkill JL, Cohen ML (February 1994). "Theory of graphitic boron nitride nanotubes". Physical Review B. 49 (7): 5081–5084. Bibcode:1994PhRvB..49.5081R. doi:10.1103/PhysRevB.49.5081. PMID 10011453.
  6. ^ Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, et al. (August 1995). "Boron nitride nanotubes". Science. 269 (5226): 966–967. Bibcode:1995Sci...269..966C. doi:10.1126/science.269.5226.966. PMID 17807732. S2CID 28988094.
  7. ^ Iijima S, Ichihashi T (June 1993). "Single-shell carbon nanotubes of 1-nm diameter". Nature. 363 (6430): 603–605. doi:10.1038/363603a0. ISSN 1476-4687.
  8. ^ Feldkamp U, Niemeyer CM (March 2006). "Rational design of DNA nanoarchitectures". Angewandte Chemie. 45 (12): 1856–1876. doi:10.1002/anie.200502358. PMID 16470892.
  9. ^ Goldberger J, He R, Zhang Y, Lee S, Yan H, Choi HJ, et al. (April 2003). "Single-crystal gallium nitride nanotubes". Nature. 422 (6932): 599–602. doi:10.1038/nature01551. PMID 12686996.
  10. ^ Kiricsi I, Fudala Á, Kónya Z, Hernádi K, Lentz P, Nagy JB (2000). "The advantages of ozone treatment in the preparation of tubular silica structures". Applied Catalysis A: General. 203: L1–L4. doi:10.1016/S0926-860X(00)00563-9.
  11. ^ Tenne R, Margulis L, Genut M, Hodes G (1992). "Polyhedral and cylindrical structures of tungsten disulphide". Nature. 360 (6403): 444–446. Bibcode:1992Natur.360..444T. doi:10.1038/360444a0. S2CID 4309310.
  12. ^ Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH (February 2004). "Nanotubular highways for intercellular organelle transport". Science. 303 (5660): 1007–1010. doi:10.1126/science.1093133. PMID 14963329.
  13. ^ Mogilevsky G, Chen Q, Kleinhammes A, Wu Y (2008). "The structure of multilayered titania nanotubes based on delaminated anatase". Chemical Physics Letters. 460 (4–6): 517–520. Bibcode:2008CPL...460..517M. doi:10.1016/j.cplett.2008.06.063.
  14. ^ de Albornoz-Caratozzolo JM, Cervantes-Sodi F (December 2023). "Chiraltube, rolling 2D materials into chiral nanotubes". Nanoscale Advances. 6 (1): 79–91. doi:10.1039/D3NA00301A. PMC 10729892. PMID 38125603.