There is a scientific consensus[1][2][3][4] that currently available food derived from GM crops poses no greater risk to human health than conventional food,[5][6][7][8][9] but that each GM food needs to be tested on a case-by-case basis before introduction.[10][11][12] Nonetheless, members of the public are much less likely than scientists to perceive GM foods as safe.[13][14][15][16] The legal and regulatory status of GM foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation.[17][18][19][20]
Citations
^Nicolia, Alessandro; Manzo, Alberto; Veronesi, Fabio; Rosellini, Daniele (2013). "An overview of the last 10 years of genetically engineered crop safety research"(PDF). Critical Reviews in Biotechnology. 34: 1–12. doi:10.3109/07388551.2013.823595. PMID24041244. We have reviewed the scientific literature on GE crop safety for the last 10 years that catches the scientific consensus matured since GE plants became widely cultivated worldwide, and we can conclude that the scientific research conducted so far has not detected any significant hazard directly connected with the use of GM crops.
The literature about Biodiversity and the GE food/feed consumption has sometimes resulted in animated debate regarding the suitability of the experimental designs, the choice of the statistical methods or the public accessibility of data. Such debate, even if positive and part of the natural process of review by the scientific community, has frequently been distorted by the media and often used politically and inappropriately in anti-GE crops campaigns.
^"State of Food and Agriculture 2003–2004. Agricultural Biotechnology: Meeting the Needs of the Poor. Health and environmental impacts of transgenic crops". Food and Agriculture Organization of the United Nations. Retrieved February 8, 2016. Currently available transgenic crops and foods derived from them have been judged safe to eat and the methods used to test their safety have been deemed appropriate. These conclusions represent the consensus of the scientific evidence surveyed by the ICSU (2003) and they are consistent with the views of the World Health Organization (WHO, 2002). These foods have been assessed for increased risks to human health by several national regulatory authorities (inter alia, Argentina, Brazil, Canada, China, the United Kingdom and the United States) using their national food safety procedures (ICSU). To date no verifiable untoward toxic or nutritionally deleterious effects resulting from the consumption of foods derived from genetically modified crops have been discovered anywhere in the world (GM Science Review Panel). Many millions of people have consumed foods derived from GM plants - mainly maize, soybean and oilseed rape - without any observed adverse effects (ICSU).
^Ronald, Pamela (May 5, 2011). "Plant Genetics, Sustainable Agriculture and Global Food Security". Genetics. 188: 11–20. doi:10.1534/genetics.111.128553. PMC3120150. PMID21546547. There is broad scientific consensus that genetically engineered crops currently on the market are safe to eat. After 14 years of cultivation and a cumulative total of 2 billion acres planted, no adverse health or environmental effects have resulted from commercialization of genetically engineered crops (Board on Agriculture and Natural Resources, Committee on Environmental Impacts Associated with Commercialization of Transgenic Plants, National Research Council and Division on Earth and Life Studies 2002). Both the U.S. National Research Council and the Joint Research Centre (the European Union's scientific and technical research laboratory and an integral part of the European Commission) have concluded that there is a comprehensive body of knowledge that adequately addresses the food safety issue of genetically engineered crops (Committee on Identifying and Assessing Unintended Effects of Genetically Engineered Foods on Human Health and National Research Council 2004; European Commission Joint Research Centre 2008). These and other recent reports conclude that the processes of genetic engineering and conventional breeding are no different in terms of unintended consequences to human health and the environment (European Commission Directorate-General for Research and Innovation 2010).
Domingo, José L.; Bordonaba, Jordi Giné (2011). "A literature review on the safety assessment of genetically modified plants"(PDF). Environment International. 37: 734–742. doi:10.1016/j.envint.2011.01.003. PMID21296423. In spite of this, the number of studies specifically focused on safety assessment of GM plants is still limited. However, it is important to remark that for the first time, a certain equilibrium in the number of research groups suggesting, on the basis of their studies, that a number of varieties of GM products (mainly maize and soybeans) are as safe and nutritious as the respective conventional non-GM plant, and those raising still serious concerns, was observed. Moreover, it is worth mentioning that most of the studies demonstrating that GM foods are as nutritional and safe as those obtained by conventional breeding, have been performed by biotechnology companies or associates, which are also responsible of commercializing these GM plants. Anyhow, this represents a notable advance in comparison with the lack of studies published in recent years in scientific journals by those companies.
Krimsky, Sheldon (2015). "An Illusory Consensus behind GMO Health Assessment"(PDF). Science, Technology, & Human Values. 40: 1–32. doi:10.1177/0162243915598381. I began this article with the testimonials from respected scientists that there is literally no scientific controversy over the health effects of GMOs. My investigation into the scientific literature tells another story.
And contrast:
Panchin, Alexander Y.; Tuzhikov, Alexander I. (January 14, 2016). "Published GMO studies find no evidence of harm when corrected for multiple comparisons". Critical Reviews in Biotechnology: 1–5. doi:10.3109/07388551.2015.1130684. ISSN0738-8551. PMID26767435. Here, we show that a number of articles some of which have strongly and negatively influenced the public opinion on GM crops and even provoked political actions, such as GMO embargo, share common flaws in the statistical evaluation of the data. Having accounted for these flaws, we conclude that the data presented in these articles does not provide any substantial evidence of GMO harm.
The presented articles suggesting possible harm of GMOs received high public attention. However, despite their claims, they actually weaken the evidence for the harm and lack of substantial equivalency of studied GMOs. We emphasize that with over 1783 published articles on GMOs over the last 10 years it is expected that some of them should have reported undesired differences between GMOs and conventional crops even if no such differences exist in reality.
Overall, a broad scientific consensus holds that currently marketed GM food poses no greater risk than conventional food... Major national and international science and medical associations have stated that no adverse human health effects related to GMO food have been reported or substantiated in peer-reviewed literature to date.
Despite various concerns, today, the American Association for the Advancement of Science, the World Health Organization, and many independent international science organizations agree that GMOs are just as safe as other foods. Compared with conventional breeding techniques, genetic engineering is far more precise and, in most cases, less likely to create an unexpected outcome."
^"Statement by the AAAS Board of Directors On Labeling of Genetically Modified Foods"(PDF). American Association for the Advancement of Science. October 20, 2012. Retrieved February 8, 2016. The EU, for example, has invested more than €300 million in research on the biosafety of GMOs. Its recent report states: 'The main conclusion to be drawn from the efforts of more than 130 research projects, covering a period of more than 25 years of research and involving more than 500 independent research groups, is that biotechnology, and in particular GMOs, are not per se more risky than e.g. conventional plant breeding technologies.' The World Health Organization, the American Medical Association, the U.S. National Academy of Sciences, the British Royal Society, and every other respected organization that has examined the evidence has come to the same conclusion: consuming foods containing ingredients derived from GM crops is no riskier than consuming the same foods containing ingredients from crop plants modified by conventional plant improvement techniques.
^"AMA Report on Genetically Modified Crops and Foods (online summary)". American Medical Association. January 2001. Retrieved March 19, 2016. A report issued by the scientific council of the American Medical Association (AMA) says that no long-term health effects have been detected from the use of transgenic crops and genetically modified foods, and that these foods are substantially equivalent to their conventional counterparts. (from online summary prepared by ISAAA)" "Crops and foods produced using recombinant DNA techniques have been available for fewer than 10 years and no long-term effects have been detected to date. These foods are substantially equivalent to their conventional counterparts.(from original report by AMA: [1])
^"Restrictions on Genetically Modified Organisms: United States. Public and Scholarly Opinion". Library of Congress. June 9, 2015. Retrieved February 8, 2016. Several scientific organizations in the US have issued studies or statements regarding the safety of GMOs indicating that there is no evidence that GMOs present unique safety risks compared to conventionally bred products. These include the National Research Council, the American Association for the Advancement of Science, and the American Medical Association. Groups in the US opposed to GMOs include some environmental organizations, organic farming organizations, and consumer organizations. A substantial number of legal academics have criticized the US's approach to regulating GMOs.
^"Genetically Engineered Crops: Experiences and Prospects". The National Academies of Sciences, Engineering, and Medicine (US). 2016. p. 149. Retrieved May 19, 2016. Overall finding on purported adverse effects on human health of foods derived from GE crops: On the basis of detailed examination of comparisons of currently commercialized GE with non-GE foods in compositional analysis, acute and chronic animal toxicity tests, long-term data on health of livestock fed GE foods, and human epidemiological data, the committee found no differences that implicate a higher risk to human health from GE foods than from their non-GE counterparts.
^"Frequently asked questions on genetically modified foods". World Health Organization. Retrieved February 8, 2016. Different GM organisms include different genes inserted in different ways. This means that individual GM foods and their safety should be assessed on a case-by-case basis and that it is not possible to make general statements on the safety of all GM foods.
GM foods currently available on the international market have passed safety assessments and are not likely to present risks for human health. In addition, no effects on human health have been shown as a result of the consumption of such foods by the general population in the countries where they have been approved. Continuous application of safety assessments based on the Codex Alimentarius principles and, where appropriate, adequate post market monitoring, should form the basis for ensuring the safety of GM foods.
^Some medical organizations, including the British Medical Association, advocate further caution based upon the precautionary principle:
"Genetically modified foods and health: a second interim statement"(PDF). British Medical Association. March 2004. Retrieved March 21, 2016. In our view, the potential for GM foods to cause harmful health effects is very small and many of the concerns expressed apply with equal vigour to conventionally derived foods. However, safety concerns cannot, as yet, be dismissed completely on the basis of information currently available.
When seeking to optimise the balance between benefits and risks, it is prudent to err on the side of caution and, above all, learn from accumulating knowledge and experience. Any new technology such as genetic modification must be examined for possible benefits and risks to human health and the environment. As with all novel foods, safety assessments in relation to GM foods must be made on a case-by-case basis.
Members of the GM jury project were briefed on various aspects of genetic modification by a diverse group of acknowledged experts in the relevant subjects. The GM jury reached the conclusion that the sale of GM foods currently available should be halted and the moratorium on commercial growth of GM crops should be continued. These conclusions were based on the precautionary principle and lack of evidence of any benefit. The Jury expressed concern over the impact of GM crops on farming, the environment, food safety and other potential health effects.
The Royal Society review (2002) concluded that the risks to human health associated with the use of specific viral DNA sequences in GM plants are negligible, and while calling for caution in the introduction of potential allergens into food crops, stressed the absence of evidence that commercially available GM foods cause clinical allergic manifestations. The BMA shares the view that that there is no robust evidence to prove that GM foods are unsafe but we endorse the call for further research and surveillance to provide convincing evidence of safety and benefit.
^Funk, Cary; Rainie, Lee (January 29, 2015). "Public and Scientists' Views on Science and Society". Pew Research Center. Retrieved February 24, 2016. The largest differences between the public and the AAAS scientists are found in beliefs about the safety of eating genetically modified (GM) foods. Nearly nine-in-ten (88%) scientists say it is generally safe to eat GM foods compared with 37% of the general public, a difference of 51 percentage points.
This wording has been implemented into this article per the result of the RfC above. The Arbitration Committee has authorized discretionary sanctions to implement the result of this RfC. After implementation, editors must not change or remove any part or whole of the text above in the article, including its wording and citations. There is no prejudice against editing other text. Any uninvolved administrator may use discretionary sanctions against editors who repeatedly breach this rule.
The following Wikipedia contributor may be personally or professionally connected to the subject of this article. Relevant policies and guidelines may include conflict of interest, autobiography, and neutral point of view.
Biotechnology is part of the WikiProject Biology, an effort to build a comprehensive and detailed guide to biology on Wikipedia. Leave messages on the WikiProject talk page.BiologyWikipedia:WikiProject BiologyTemplate:WikiProject BiologyBiology articles
This article is within the scope of WikiProject Chemical and Bio Engineering, a project which is currently considered to be inactive.Chemical and Bio EngineeringWikipedia:WikiProject Chemical and Bio EngineeringTemplate:WikiProject Chemical and Bio EngineeringChemical and Bio Engineering articles
This article is within the scope of WikiProject Molecular Biology, a collaborative effort to improve the coverage of Molecular Biology on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.Molecular BiologyWikipedia:WikiProject Molecular BiologyTemplate:WikiProject Molecular BiologyMolecular Biology articles
This article is within the scope of WikiProject Technology, a collaborative effort to improve the coverage of technology on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.TechnologyWikipedia:WikiProject TechnologyTemplate:WikiProject TechnologyTechnology articles
This article is within the scope of WikiProject Pharmacology, a collaborative effort to improve the coverage of Pharmacology on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.PharmacologyWikipedia:WikiProject PharmacologyTemplate:WikiProject Pharmacologypharmacology articles
This article is within the scope of WikiProject Science Policy, a collaborative effort to improve the coverage of Science policy on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.Science PolicyWikipedia:WikiProject Science PolicyTemplate:WikiProject Science PolicyScience Policy articles
Feel free to add, remove, strike or object any of the to-do's below, but remember to discuss controversial topics here. --Victor DPARLE 18:54, 29 July 2006 (UTC)
This article was the subject of a Wiki Education Foundation-supported course assignment, between 8 January 2024 and 24 April 2024. Further details are available on the course page. Student editor(s): Tomascasas00 (article contribs).